If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2f^2-6f=0
a = 2; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·2·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*2}=\frac{0}{4} =0 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*2}=\frac{12}{4} =3 $
| 8+7(4-2b)=92 | | −0.75b−3=0.25b | | 1/4d=-60 | | 2+6(-x-4)=3x-18+3x | | 0.46v=3.8 | | b+16=-26 | | 0.34n=4.7 | | r÷187=9. | | -4(5x-3)+7=179 | | j/7-10=18 | | x-9=2= | | f/8+20=24 | | 0.25(x-12)=-4 | | 9r-21=6 | | u/8+17=23 | | 8(j+58)=88 | | ∣−6+3c∣=24 | | p-5=15= | | 5q+20=95 | | (-1)(x+3)=0 | | 5y−8=52 | | r+20=38 | | 2(x−3)+1=7x+15 | | 2(g+1)=3(g+2 | | 2x+12=28× | | x/5-11=9 | | s/5+-40=-33 | | 6.5*10^-5=(x^2)/(.461-x) | | 5r-10+6r=5+11r | | 5x2=-35x | | 4(y-3)-5=-3(-6y+3)-2y | | 2x-12=28× |